HODNOČENÍ KVALITY PŮDY V EKOLOGICKÝ HOSPODAŘÍCÍM PODNIKU

Zpracováno s podporou Ministerstva zemědělství ČR
Metodická pomůcka

Hodnocení kvality půdy v ekologicky hospodařícím podniku

Autorský kolektiv:
Doc. Ing. Eduard Pokorný, Ph.D.
Prof. Dr. Ing. Bořivoj Šarapatka, CSc
Ing. Květuše Hejátková

Oponent:
RNDr. Ľubica Pospíšilová, CSc.

Metodická pomůcka byla vytvořena v podpůrném programu 9.F.g
Metodická činnost k podpoře zemědělského poradenského systému
Ministerstva zemědělství ČR

ZERA-Zemědělská a ekologická regionální agentura, o.s.
V. Nezvala 977, 675 71 Náměšť nad Oslavou,
Tel.: 568 620 070, e-mail: info@zeraagency.eu, www.zeraagency.eu
Obsah

Obsah .. 3
1. Úvod ... 5
2. Půdní charakteristiky v ekologickém a konvenčním zemědělství 6
3. Indikátory kvality ... 8
 3.1 Pravidelné sledování půdy na ekofarmách ... 9
4. Odběr a úprava půdních vzorků ... 11
5. Typy analýz .. 12
6. Metody půdních analýz pro ekologicky hospodařící farmy 14
 6.1 Fyzikální vlastnosti půdy ... 14
 6.2 Chemické vlastnosti půdy a metody jejich stanovení 17
 6.3 Biologické vlastnosti půdy a metody jejich stanovení 20
7. Citovaná a další použitá literatura .. 23
8. Přílohy ... 26
1. Úvod

V ekologickém zemědělství hraje půda klíčovou roli, často u ní také používáme termín jako u lidského organi-

nismu „zdravá půda“. Zdravá půda je základním předpokladem pro růst a vývoj zdravých rostlin, živočichů i člověka. Historie nám však ukazuje mnoho příkladů špatného využívání půdy vedoucího k chudobě, podvýži-vě a živelním pohromám.

Půda je nedílnou součástí agroekosystémů, lesních i travinných ekosystémů. Je základem produktivity jak při-

rozených, tak umělých ekosystémů, ovlivňuje i vodní a urbánní ekosystémy. V ekosystémovém přístupu si stále

musíme uvědomovat interakce mezi živými a neživými složkami našeho prostředí. Půda je zároveň i oživenou

složkou prostředí, dynamickou a životně důležitou pro fungování terestrických ekosystémů a představuje jedi-

nečnou vyrovnanost mezi životem a smrtí.

Pojem kvalita půdy není nový, historicky byl spojován s produktivitou zemědělských systémů. V současné době

však uvedené produkční hodnocení půdy nedostačuje, musíme proto kvalitu půdy hodnotit v širších ekologic-

kých, resp. environmentálních souvislostech. Půda má vedle produkční funkce i řadu dalších, jako např. filtrač-

ní, pufrací, transformační, je prostředkem pro život organismů, zanedbatelné nejsou ani její socio-ekonomické

funkce. Pro komplexní hodnocení jsou používány termíny kvalita nebo zdraví půdy. Pro zjednodušení můžeme

používat oba termíny jako synonyma.

Jak bychom mohli kvalitu půdy definovat? V roce 1994 navrhli Doran a Parkin definici, ve které je kvalita půdy

chápána jako schopnost půdy fungovat v hranicích ekosystému a udržovat jeho produktivitu, zajišťovat kvalitu

prostředí a podporovat zdravý vývoj rostlin a živočichů.

Kvalitní (zdravá) půda musí mít schopnost chránit kvalitu životního prostředí, podporovat produktivitu rostlin

a živočichů a neohrožovat zdraví lidí.

Metodika má za cíl pomoci praxi jak měřit a hodnotit kvalitu půdy v systému ekologického hospodaření. Vychází z metod pro stanovení kvality půdy, které jsou v současné době pro praxi přístupné a využívané, a to jak pro ornou půdu, tak pro trvalé tavné porosty.

Metodika je doplněna konkrétními hodnotami vlastností půd, které byly stanoveny metodami půdních analýz

uvedených v této metodice, a to na trvalých travních porostech. Výsledky jsou výsledkem výzkumného úkolu

QD 1236 Technologie nestájového chovu ovcí pro marginální oblasti a podniky ekologického zemědělství v

letech 2001 – 2004 (Závěrečná zpráva projektu QD 1236 Mze NAZV). Zpracování metodické pomůcky

bylo možné i díky grantu MŠMT – Národní program výzkumu II č. 2B06101 (Optimalizace zemědělské a říční

krajiny v ČR s důrazem na rozvoj biodiverzity).
2. Půdní charakteristiky v ekologickém a konvenčním zemědělství

Půda je jedním z nejdůležitějších přírodních zdrojů a má klíčovou úlohu v zemědělství. Při sledování změn mezi ekologickým a konvenčním zemědělstvím je často studována:

- půdní organická hmota,
- biologická aktivita,
- struktura půdy,
- eroze.

Výzkum organické hmoty půdy se většinou koncentruje na **obsah organického uhlíku** a jeho změny během konverze na ekologické zemědělství. Řada výzkumů potvrzuje, že ekologicky obhospodařované plochy mají vyšší obsah organického uhlíku ve srovnání s konvenčními. V některých výzkumech se ale ukázala vyšší dekompozice organické hmoty, např. při intenzivnějším zpracování půdy souvisejícím s likvidací plevelných rostlin.

Dlouhodobé pokusy ale potvrzují hypotézu, že ekologické způsoby hospodaření lépe chrání organickou hmotu půdy. Výzkum rovněž poukazuje na větší mikrobiální biomassu a větší množství látek huminové povahy. Minimální zpracování půdy je významným faktorem ochrany půdní organické hmoty. Důležitá je přítom správně navržená struktura plodek, hnojení, zásahy do systému atd.

Biologická aktivita je významným indikátorem dekompozice organické hmoty v půdě. Klíčovou roli zde hrají žížaly, které jsou předmětem řady studií, a to z důvodu citlivosti k narušení půdního prostředí. Dalším významným indikátorem je mikrobiální aktivita.

Vyšší dodávka organické hmoty ve formě posklizňových zbytků a organických hnojiv vytváří příznivé životní podmínky pro žížaly a další faunu v půdě.

Z řady výzkumů můžeme zobecnit, že ekologické zemědělství má:
- průkazné větší biomassu a abundanci žížal,
- vyšší diverzitu druhů žížal, změny ve složení populací indikované větším počtem juvenilních jedinců žížal.

Parametry pro charakterizování **půdní mikrobiální aktivity** obsahují ve řadě prací mikrobiální biomassu, aktivitu vybraných enzymů, mykorrhizu atd.

Řada prací po konverzi na ekologický systém hospodaření uvádí:
- zvýšení mikrobiální aktivity korelující s obdobím, kdy půda byla obhospodařována ekologicky,
- o 20–30 % vyšší mikrobiální biomassu ve srovnání s konvenčním systémem,
- o 30–100 % vyšší mikrobiální aktivitu na ekologických plochách,
- vyšší mikrobiální diverzitu v ekologickém systému,
- efektivnější využití přijatelných zdrojů půdními organismy.

Přesto je možné konstatovat, že změny v biologické aktivitě probíhají pomalu a v řadě výzkumů srovnávacích ekologické a konvenční zemědělství nebyly zaznamenány rozdíly. Proto řada výzkumů tato hodnotí až po zhruba 10 letech po provedené konverzi na ekologické zemědělství.

Vážným problémem na velkých plochách (zejména orných půd) je vodní a větrná eroze. V řadě prací byl opět popsán pozitivní vliv ekologického zemědělství na tento problém, a to hlavně z důvodu:
- pestřejších osevních postupů s vyšším podílem jetelovin a jetelotrav,
- vyššího procenta meziplodin a podsevů prodlužujících pokryv půdy v průběhu roku,
- menšího zastoupení širokořádkových kultur (např. kukuřice),
- intenzivnějšího organického hnojení s dalšími pozitivními vlivy na půdu.

Přesto se může i u ekologických farem nebezpečí eroze vyskytnout (a to někdy větší než u konvenčně obhospodařovaných ploch) zejména z důvodu:
- častějšího mechanického zpracování půdy,
- pomalejšího vývoje rostlin z důvodu nižšího obsahu minerálního dusíku.
Porovnáme-li jednotlivé faktory, pak podle výzkumu zjistíme, že pozitiva převládají, což se kladně projeví v omezení erozního smyvu na sledovaných lokalitách ekologického zemědělství.

Shrneme-li problematiku půdy, zjistíme, že ekologické zemědělství chrání půdní úrodnost lépe než konvenční zemědělství, neboť:

- obsah organické hmoty je obvykle vyšší v ekologicky obhospodařované půdě,
- ekologicky obhospodařované půdy vykazují signifikantně vyšší biologickou aktivitu,
- v problematice struktury půdy řada prací nenachází rozdíly mezi systémy,
- ekologické zemědělství chrání půdu před erozí lépe než konvenční.

Změny v půdní úrodnosti však nemůžeme očekávat okamžitě, efekty podle výzkumů můžeme zaznamenat za více než 8 let.
3. Indikátory kvality

V praxi stojíme před problémem, jak měřit a hodnotit kvalitu půdy. Existují uznávané metody pro hodnocení kvality vody a ovzduší, ale určení standardů pro hodnocení půdy je velmi složité z důvodu její značné variabilit, heterogenity a probíhajících procesů. Vědci v mnoha zemích se snaží o navržení indexu kvality půdy, který by v sobě zahrnoval změny půdního prostředí v čase. Nejdríve je však nutné zvolit vhodné indikátory kvality nebo zdraví, které musí podle Dorana a Parkina (1996):

- korelovat s procesy v ekosystému,
- integrovat fyzikální, chemické a biologické vlastnosti půd a procesy v nich probíhající a sloužit jako základní vstup potřebný k odhadu půdních vlastností nebo funkcí, které je těžké měřit přímo,
- být relativně lehce použitelné v polních podmínkách a zvládnutelné pokud možno jak specialisty, tak uživateli,
- být citlivé ke změnám v hospodaření nebo klimatu.

Mezi indikátory kvality můžeme zařadit například charakteristiky:
- fyzikální – textura, hloubka půdy, hydráulická vodivost, maximální a retenční vodní kapacita, objemová hmotnost, půdní hmotnost, struktura,
- chemické nebo fyzikálně-chemické – obsah a kvalita humusu, obsah celkového dusíku, kationtová výměnná kapacita, pH, vodivost, obsah živin, nasycenost sorpčního komplexu a hygienické parametry s ohledem na rizikové prvky a organické kontaminanty,
- biologické – C, N biomassy mikroorganismů, potenciálně mineralizovatelný N, respirace, aktivita půdních enzymů atd.

Hodnocení kvality (zdraví) půdy musí být kompletní a musí integrovat všechny části půdního systému a ne se omezovat na fungování pouze určité části. Již to je značně náročné a přidáme-li k tomu požadavek, aby tyto metody byly zvládnutelné co nejširším spektrem pracovníků, zejména těmi, kteří obhospodařují krajinu, jedná se o velmi složitý úkol.

Vzhledem ke komplexnosti problému hodnocení kvality a skutečnosti, že jednotlivé indikátory kvality (zdraví) půdy plně nevyhovují, snaží se řada autorů vytvořit index kvality půdy. Z publikovaných prací je však zřejmé, že se jedná o značně specializovanou práci odborníků, která drží pouze část složitého systému a je mnohdy v praktickém prostředí těžko zvládnutelná. Proto se vedle detailního hodnocení dílčích procesů v posledních letech pracuje na komplexním vyjádření kvality celého systému. V zemědělské soustavě pak nehodnotíme pouze kvalitu produktů nebo půdy, ale snažíme se uplatňovat holistický pohled na celý systém s vazbami na prostředí a zásadu použitelnosti v terénní praxi.

Příkladem praktického pohledu na tuto problematiku může být hodnocení z Wisconsinu, které vzniklo ze spolupráce mezi vědci a farmáři. Hodnocení se vypracovává na podkladě interview s farmáři a více než polovina otázek se týká půdy, dále pak rostlin, zvířat a vody. Z hodnocení v jednotlivých kategoriích (zdravá, zhoršená, nezdravá) je pak určována výslná klasifikace kvality půdy (Roming et al., 1996).

V praxi použitelnou metodu navrhl Doran (Sarrantonio et al., 1996), kdy pomocí terénní soupravy hodnotí infiltraci vody, objemovou hmotnost, půdní respiraci, plnou vodní kapacitu, vzdružnost, teplotu, pH, vodivost a obsah nitrátového dusíku. Zároveň podává návod na vyhodnocování získaných výsledků.

Hodnocení kvality půdy pomocí speciálních terénních souprav i dotazníkovými akcemi není u nás doposud praktikováno, zasluhuje však pozornost a rozpracováno do podmínek České republiky tak, aby tyto mohly být využitelné v provozní praxi.

Při hospodaření je nutné si uvědomit, že produkčním procesem by půda měla zůstat „neopotřebovaná“ a jedním z cílů hospodaře by mělo být, aby půdu svým potomkům předal v lepším stavu, než ji obdržel.
3.1 Pravidelné sledování půdy na ekofarmách

Ještě než zemědělec přistoupí k zadání analýz půdy, měl by se seznámit s teorií a s obhospodařovanou půdou a sledovat změny po různých zásazích přímo na poli, k čemuž může využít např. rýčovou diagnózu. Pro prvotní orientaci o struktuře, utužení, zbarvení, pachu, vzhledu kořenů pěstovaných rostlin a větších živočichů jsou tyto informace v provozu velmi důležité. Podle publikovaných doporučení (Preuschen, 1987) by měla být rýčová diagnóza prováděna v době nejsilnějšího rozvoje kořenů, a to na plochách:
- obilovin asi 3 týdny před klíznou,
- řepy a brambor v první polovině srpna,
- polních pícnin krátce před druhou sečí,
- trvalých travních porostů mezi červnem a zářím,
- meziplodin a zeleného hnojení na přelomu září a října,
- trvalých kultur v červnu.

Důležité je vedle termínu i volba vhodného místa. U stejnoměrně vyvinutých porostů je to jednoduché. Tam, kde je porost značně nevyrovnány, je třeba zachytit jak dobrá, tak špatná místa.

V získaném monolitu sledujeme alespoň orientačně druh půdy, barvu, vlhkost, strukturu, kořeny rostlin a půdní živočichy.

Již při získávání monolitu jsme schopni alespoň hrubě odhadnout druh půdy - jedná-li se o písčitou, hlinitou nebo jílovitou půdu. Také obsah skeletu (štěrk a kameny) orientačně lehce zjistíme. Na získaném vzorku vidíme jednotlivé vrstvy, rozeznáme ornici a podorníci. Ve svrchní vrstvě se rozeznávají umělé nebo přirozené rýčové, a to zejména tam, kde mělko zapravujeme organickou hmotu. Lze také pozorovat místy kultivačního nářadí, např. zda došlo k stlačení půdy nebo k předčasnému způsobení podorníků a tím k rozmažení. Všimáme si tedy průběhu slícení a jeho důsledků na strukturu půdy. Důležité je však také pozorovat vliv kultivačního nářadí, např. zda došlo k stlačení půdy nebo k zpětování půdy.

Příkladem může být získávání monolitu a sledování jeho struktury v průběhu času. Pomocí motyčky můžeme z monolitu uložit kořeny jak kulturní rostliny, tak rostliny doprovodné. Zjednodušeně je možné říci, že čím je kořenový systém tříděným činitelům zvýšen je, tím je.

Pomocí motyčky můžeme z monolitu uložit kořeny jak kulturní rostliny, tak rostliny doprovodné. Zjednodušeně je možné říci, že čím je kořenový systém tříděným činitelům zvýšen je, tím je.

V získaném monolitu sledujeme alespoň orientačně druh půdy, barvu, vlhkost, strukturu, kořeny rostlin a půdní živočichy.

Již při získávání monolitu jsme schopni alespoň hrubě odhadnout druh půdy - jedná-li se o písčitou, hlinitou nebo jílovitou půdu. Také obsah skeletu (štěrk a kameny) orientačně lehce zjistíme. Na získaném vzorku vidíme jednotlivé vrstvy, rozeznáme ornici a podorníci. Ve svrchní vrstvě se rozeznávají umělé nebo přirozené rýčové, a to zejména tam, kde mělko zapravujeme organickou hmotu. Lze také pozorovat místy kultivačního nářadí, např. zda došlo k stlačení půdy nebo k předčasnému způsobení podorníků a tím k rozmažení. Všimáme si tedy průběhu slícení a jeho důsledků na strukturu půdy. Důležité je však také pozorovat vliv kultivačního nářadí, např. zda došlo k stlačení půdy nebo k zpětování půdy.

Od doby, kdy zemědělec necháze po pluhu, ale situaci sleduje ze sedadla traktoru, postrádá většinou dostatek informací o své půdě a jejím stavu. Znalost půdy na pozemcích, na kterých hospodaří, by měla být základem pro to, aby bylo možné volit správná agrotechnická opatření. Než však odebere vzorek půdy nebo si odebě získá, měl by alespoň orientačně svoji půdu poznat a sledovat a k tomu mu může posloužit popsaná metoda. Časem po získání zkušeností i na vyrytém monolitu bude pozorovat stále více detailů.
4. **Odběr a úprava půdních vzorků**

Rozbor půdy bude sice provádět specializovaná laboratoř, odběry však mohouprovádějí zemědělci a do laboratoře doručí odebraný půdní vzorek. Je nutné si uvědomit, že kvalita odebíraného půdního vzorku významně ovlivňuje výsledky analýzy a následná opatření přímo v zemědělském podniku. Nepomůže nám, že změříme obsah nějakého prvku s přesností v mg na kg půdy, když je vzorek již od počátku špatně odebrán. Pokud nejsme schopni zajistit způsob odběru, jak je nastíněno dále, měl by být proveden odbornou organizací, která bude zajišťovat analýzy půd. Základní podmínkou správného odběru vzorků je dobrá znalost vzorkovaného pozemku. Tuto znalost získáme mj. i pečlivým sledováním půdy při rýčové diagnózě.

Půdní vzorky by se měly odebrat výhradně sondovací tyčí (tzv. agrochemickou sondýrkou). Z každé lokality jednotné obhospodařované bychom měli odebrat alespoň jeden průměrný vzorek. Tento průměrný vzorek se skládá z minimálně 30 vpichů sondovací tyčí, a to maximálně z asi 7hektarové plochy. Je-li plocha větší, odebráme úměrně více průměrných vzorků. U vinohradů, chmelnic a sadů se jedná maximálně o 2 ha. Hloubka odběru vzorků na orné půdě se týká většinou orniční vrstvy, u luk a pastvin musíme oddělit vrchní vrstvu drnu. U chmelnic a sadů vzorkujeme většinou do hloubky 40 cm, u ploch určených k výsadbě vinohradů pak do 60 cm. Vzorek musí být reprezentativní, homogenní a nekontaminovaný jak odebírem, tak přepravou.

Odebrané vzorky se nechají volně vyschnout na vzduchu v otevřených sáčcích. V laboratoři se půdní vzorek na suchém a větraném místě dosuší, z vysušeného vzorku se odstraní větší části skeletu, rostlinné a živočišné zbytky a vzorek se pak rozděluje na sítech o velikosti ok 2 mm, čímž získáme jemnozem a skelet. Z jemnozemě se pak oddělíme průměrný vzorek o hmotnosti asi 5 g, z tohoto pečlivě odděleného zbytku rostlinného a živočišného materiálu a rozetřeme ho v achátové misce tak, aby prošel sítem o průměru 0,25 mm. Takto upravené vzorky můžeme skladovat na vhodném místě i řadu let.

Pokud je nutné odebírat vzorky pro stanovení minerálního dusíku, bude způsob odběru obdobný, vzorky se odebrávají v celé hloubce půdního profilu po 30 cm (zpravidla 0–30, 30–60, příp. 60–90 cm). Odebrou vzorky se umístí do PE sáčků a okamžitě se transportují do laboratoře ke zpracování.

Čerstvý vzorek se zpracovává ihned po dodání do laboratoře, pokud to není možné, lze ho uchovávat maximálně 3 dny při teplotě nižší než 4 °C. Po delší dobu je možné čerstvé vzorky uchovávat při teplotách nižších než –15 °C. Při úpravě vzorků odstraníme opět zbytky rostlinného a živočišného materiálu a vzorky se přesévají přes síť o průměru 5 mm.

Vzorky na stanovení fyzikálních vlastností se odebrávají do Kopeckého fyzikálních válečků v přirozeném stavu tak, že váleček vložíme přímo do půdy pomocí nářadí, které je vhodné k přirozenému stavení válečku. Po vyjmutí válečku se zemi nekontaminované přes třískou i s vany o je odstraníme a zemi se zarovnáme. Na zarovnaný okraj nasadíme lehké a nesoudržné zeminu mosaznou síťku a na okraje plochá víčka. Uzavřený váleček opevníme gumičkou. Vzorky na stanovení fyzikálních vlastností je nutno odebírat alespoň ve třech opakováních a bude je provádět specializované pracoviště.
5. **Typy analýz**

Na základě popsaných půdních vlastností si zvolíme typy analýz pro hodnocení našich půd. To, co bychom měli znát vždy, označíme jako vlastnosti základní, ostatní jako pomocné – k jejich stanovení přistoupíme po dohodě s profesionálním půdoznalcem.

Základní vlastnosti

Z fyzikálních vlastností bychom měli vědět, o jaký půdní druh se jedná. Zrnitostní rozbor může být proveden jednorázově s trvalou hodnotou, hustoměrnou, pipetovací nebo plavicí metodou a slovního označení (písčitá, hlinitá atd.).

Z chemických vlastností se neobejdeme bez znalostí:
- výměnné půdní reakce,
- obsahu a kvality humusu (obsah oxidovatelného uhlíku přečetný na humus a poměr huminových kyselin k fulvokyselinám),
- charakteristiku sorpčního komplexu (celková sorpční kapacita a nasycenost sorpčního komplexu jednotlivými kationy),
- obsahu přístupného hořčíku, fosforu a draslíku,
- obsahu celkového dusíku.

Pomocné charakteristiky

Z fyzikálních vlastností
- objemová hmotnost, pórovitost a distribuce pórů (množství pórů kapilárních a nekapilárních),
- pevnost a vodostálost agregátů a konzistenční meze,

Z chemických vlastností je:
- aktuální půdní reakce, popř. obsah výměnného hliníku,
- vodivost vodního výluhu (určení zasolenosti),
- obsah minerálního dusíku (amonné a nitrátový),
- obsah cizorodých látek a potenciálně rizikových prvků (těžké kovy, organické látky).

Z biologických vlastností jsou to především respirační testy (dýchací mohutnost) a z jejich variant vypočítaná dostupnost fyzioologicky využitelného dusíku a rozložitelnost a stabilita organických látek.

V rámci sledování půdy na ekologicky obhospodařovaných plochách by měl být zajištěn monitoring následujících charakteristik:

Fyzikální vlastnosti – určení zrnitosti – půdního druhu (vstupní informace), rozbor Kopeckého válčkem (měrná a objemová hmotnost, pórovitost, maximální kapilární kapacita, kalkulace minimální vzdušnosti). Odběr vzorku i stanovení provede odborná organizace.

Fyzikálně chemické a chemické vlastnosti – aktivní a výměnná reakce, vodivost, obsah a kvalita humusu, obsah přijatelného fosforu a celkového dusíku, nasycenost sorpčního komplexu. Odběr vzorků půdy může podle metodik a poučení provést sám farmář, analýzy provede odborná organizace.

Biologie půdy – respirační testy, nitriifikace, amonizace, popř. vybrané skupiny edafonu – žížaly. Odběry i stanovení provede odborná organizace.

Výběr charakteristik vychází ze sledování vlastností orných půd i z monitoringu půd (zejména travních porostů v ekologickém zemědělství). U jednotlivých ploch by dále měly být sledovány základní provozní údaje, jako jsou vstupy (např. hnojení), produkce, u trvalých travních porostů pak zatížení dobytčími jednotkami, diverzita a počet druhů rostlin.

Metodická pomůcka: Hodnocení kvality půdy v ekologicky hospodařícím podniku 13
Při přechodu na ekologické zemědělství by na lokalitě měla být provedena vstupní analýza, po které by následovalo sledování:

- na orné půdě pokud možno u ozimé pšenice (příp. jiné ozimé obiloviny) asi v polovině dubna, a to minimálně 1krát za 5 let na každém poli,
- na trvalých travních porostech – na loukách asi v polovině dubna, na pastvinách před zahájením pastvy, a to u obnovených porostů (do 15 let stáří) 1krát za 5 let, u neobnovovaných porostů (nad 15 let stáří) 1krát za 7 let.

Ještě před vlastními analýzami bychom se měli seznámit s územím, na kterém hospodaříme, a s výsledky rozborů, které byly již dříve provedeny. Prvními údaji může být bonitace, která vychází z „Komplexního průzkumu zemědělských půd“ (KPP) prováděného na celém území České (a Slovenské) republiky v 60. a 70. letech minulého století. Výsledky jsou dostupné za finanční úhradu ve Výzkumném ústavu meliorací a ochrany půdy: pro oblast Čech na adrese – Žabovřeská 250, Praha 5 Zbraslav a pro Moravu – Lidická 24/26, Brno.

6. Metody půdních analýz pro ekologicky hospodařící farmy

6.1 Fyzikální vlastnosti půdy

Fyzikální rozbor – odběr vzorků

Pokud je nutné stanovit fyzikální vlastnosti a charakterizovat vodní a vzdušný režim půdy, odebíráme půdní vzorky v neporušeném stavu do tzv. Kopeckého fyzikálních válečků. Válečky jsou vyrobeny z nerez oceli, většinou o objemu 100 cm³ a s maximální výškou 5 cm. Váleček je opatřen na spodní straně ostřím, které umožňuje jeho snadné pronikání do půdy. Tyto válečky pomocí nástavce zatlačujeme nebo zatloukáme ve vertikálním směru do půdy tak, aby se zemina protlačila mírně nad váleček. Pomocí polní lopatky a nože váleček s půdou vyjmememe a nožem odstraníme přebytky zeminy (postupně, kuželovitě). Na zarovený okraj nasadíme, u lehkých nesoudržných zemin na spodní okraj mosaznou sítku, a na oba okraje plochá víčka. Uzavřený váleček obejmeme gumičkou. Vzorky na stanovení fyzikálních vlastností je nutno odebírat alespoň ve třech opakováních.

Zrnitostní složení půd

Metody:

Zrnitostní rozbor se provádí buď pipetovanou metodou (Zbíral a kol., 1997) nebo hustoměrnou metodou podle Casagrande (metoda vychází z měření úbytku hustoty hydrosuspenze při usazování částic zeminy v předem zvolených časových intervalech).

Základní klasifikační stupnice podle V. Nováka (Jandák et al., 1989)

<table>
<thead>
<tr>
<th>Obsah částic (zrn) < 0,01 mm (%)</th>
<th>Označení půdního druhu</th>
<th>Skupinové označení</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>píšťátá zemina (P)</td>
<td>lehká</td>
</tr>
<tr>
<td>10 – 20</td>
<td>hlinitopíšťátá zemina (HP)</td>
<td>středně těžká</td>
</tr>
<tr>
<td>20 – 30</td>
<td>píšťatohlinitá zemina (PH)</td>
<td></td>
</tr>
<tr>
<td>30 – 45</td>
<td>hlinitá zemina (H)</td>
<td></td>
</tr>
<tr>
<td>45 – 60</td>
<td>jílovitohlinitá zemina (JH)</td>
<td></td>
</tr>
<tr>
<td>60 – 75</td>
<td>jílovitá (JV)</td>
<td>těžká</td>
</tr>
<tr>
<td>nad 75</td>
<td>jil (J)</td>
<td></td>
</tr>
</tbody>
</table>
Klasifikační stupnice KPZP (Jandák et al., 1989)

<table>
<thead>
<tr>
<th>Velikost zrn (mm)</th>
<th>Označení frakcí</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0,001</td>
<td>jíl</td>
</tr>
<tr>
<td>0,001 – 0,005</td>
<td>jemný prach</td>
</tr>
<tr>
<td>0,005 – 0,01</td>
<td>střední prach</td>
</tr>
<tr>
<td>0,01 – 0,05</td>
<td>hrubý prach</td>
</tr>
<tr>
<td>0,05 – 0,25</td>
<td>jemný písek</td>
</tr>
<tr>
<td>0,25 – 2,00</td>
<td>střední písek</td>
</tr>
<tr>
<td>2,00 – 4,00</td>
<td>hrubý písek</td>
</tr>
<tr>
<td>4,00 – 30,00</td>
<td>štěrk</td>
</tr>
<tr>
<td>> 30,00</td>
<td>kamení</td>
</tr>
</tbody>
</table>

Půdní pórovitost

V půdě se nacházejí prostory nezaplněné pevnou fází. Tyto prostory nazýváme půdní póry. Jsou většinou rozdílného tvaru, velikosti a jsou různým způsobem propojeny. Póry umožňují v půdě proudění vody a vzduchu. Probíhají v nich látkové přeměny a výměnné reakce mezi mikroorganismy a kořínky rostlin. V kapilárních pórech (s průměrem menším než 0,2 mm) může voda proudit proti působení gravitace, v nekapilárních (s průměrem větším než 0,2 mm) se voda pohybuje vlivem přitažlivosti do spodních vrstev půdy a na její místo se dostává vzduch.

Celková pórovitost zemědělských půd se v ornici pohybuje v rozmezí 40 – 50 %, v podornici 30 – 40 %. Umožňuje objektivně vyhodnotit kyprost či ulehlost půdy.

Pórovitost může pěstitel významně ovlivnit zpracováním půdy (orbou, vláčením, kypřením, válením apod.) (www.ewa.cz).

Metody:

Pórovitost je poměr objemu pórů V_p k celkovému objemu půdy V_s v přirozeném uložení.

$$P = \left(\frac{V_p}{V_s} \right) \times 100 \text{ (% obj.)}$$

Můžeme ji vypočítat i z objemové (r_d) a měrné hmotnosti (r_s) půdy.

$$P = \left(\frac{r_s - r_d}{r_s} \right) \times 100 \text{ (% obj.)}$$

(metody pro stanovení pórovitosti jsou uvedeny na www.agrokom.cz – Fyzikální charakteristiky půdy)

Měrná hmotnost půdy

Je hmotnost jednotkového objemu pevné fáze půdy bez pórů, tj. za předpokladu, že pevné částice dokonale vyplňují daný prostor. Definujeme ji také jako poměrné číslo, které udává, kolikrát je určité množství zeminy vysušené při 105 °C těžší než stejný objem vody při 4 °C. Měrná hmotnost závisí na obsahu různých minerálů a organicích látek (humusu). Nejvíce zastoupeným nerostem v minerálním podílu většiny půd je křemen.

Průměrná měrná hmotnost půdy je proto blízká jeho měrné hmotnosti, tj. 2,65 g.cm⁻³. Tuto hodnotu snižuje větší obsah humusu, naopak zvyšuje obsah těžkých minerálů. Průměrná měrná hmotnost našich půd se pohybuje kolem 2,6 – 2,7 g.cm⁻³, v organických půd klesá až pod 1,5 g.cm⁻³. Hodnotu měrné hmotnosti potřebujeme k výpočtu půdní pórovitosti.

Metody:

Objemová hmotnost

Je to hmotnost objemové jednotky půdy v neporušeném stavu, tj. s póry vyplněnými momentním obsahem vody a vzduchu. Její hodnota je závislá na měrné hmotnosti, na podílu pórů v půdě a na jejich zaplňení vodou. Je to hodnota, která se mění během roku v závislosti na vlhkostních poměrech v půdě. Objemová hmotnost minerálních půd kolísá mezi 0,8 – 1,8 g.cm\(^{-3}\), u organických půd většinou mezi 0,2 – 0,3 g.cm\(^{-3}\).

K utužení hlinité půdy dochází, pokud je objemová hmotnost vyšší než 1,45 g.cm\(^{-3}\).

Strukturní stav humusového horizontu u středně těžkých a těžkých půd (Kutílek, 1996)

<table>
<thead>
<tr>
<th>Strukturní stav humusového horizontu</th>
<th>Objemová hmotnost půdy (g.cm(^{-3}))</th>
<th>Pórovitost (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výborný</td>
<td>< 1,2</td>
<td>> 54</td>
</tr>
<tr>
<td>Dobrý</td>
<td>1,2 – 1,4</td>
<td>46 – 54</td>
</tr>
<tr>
<td>Nevyhovující</td>
<td>1,4 – 1,6</td>
<td>39 – 46</td>
</tr>
<tr>
<td>Nestrukturní</td>
<td>1,6 – 1,8</td>
<td>31 – 39</td>
</tr>
</tbody>
</table>

Kritické objemové hmotnosti po vysušení (Lhotský, 1984)

<table>
<thead>
<tr>
<th>Půdní druh</th>
<th>J</th>
<th>JV, JH</th>
<th>H</th>
<th>PH</th>
<th>HP</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_d) kritické (g.cm(^{-3}))</td>
<td>>1,35</td>
<td>>1,40</td>
<td>>1,45</td>
<td>>1,55</td>
<td>>1,60</td>
<td>>1,70</td>
</tr>
</tbody>
</table>

Metody:

Maximální kapilární kapacita

Stanovuje hodnotu maximálního nasycení půdních kapilárních pórů. U hlinitých půd by neměla přesáhnout 36 %, jinak je půda porušená a voda na takovém pozemku špatně vsakuje. Je to tedy maximální vlhkost, na kterou by měla být půda zavlažována, aniž by došlo ke ztrátám vody či zamokření.

Metody:

Maximální kapilární kapacitu získáme po 2 hodinách odsávání vody z plně nasyceného vzorku. Jedná se o laboratorní metodu podle Nováka (Jandák, Prax, Pokorný, 2001).

Retenční vodní kapacita

Je to maximální množství vody, které je půda schopna trvaleji zadržet vlastními silami po 24 hodinách v téměř rovnovážném stavu po nadměrném zavlažení.
Metodická pomůcka: Hodnocení kvality půdy v ekologicky hospodařícím podniku

Metody:
Stanovuje se v laboratoři metodou podle Drbala ve vzorku odebraném do Kopeckého fyzikálního válečku (Drbal, 1971).

Plná vodní kapacita (nasáklivost)

Vlhkost 30minutová
Používá se pro stanovení nekapilárních pór.

Minimální vzdusná kapacita
Je rozdíl mezi pórovitostí a maximální kapilární kapacitou. Udává podíl nekapilárních pór v půdě, které voda po navlažení může brzy opustit.

Vlhkost
Půdní vlhkost je množství vody v půdě (vztaženo k suché hmotnosti).

Měří se vážkovou metodu (gravimetrickou) – spočívá na stanovení půdní vlhkosti vážením vlhkého a vysušeného půdního vzorku. Vzorky se vysouší při teplotě 105 °C do konstantní hmotnosti (Jandák, Prax, Pokorný, 2001).

6.2 Chemické vlastnosti půdy a metody jejich stanovení

Obsah a kvalita humusu
Humus je tvořen zbytky rostlinných a živočišných organismů, které jsou v různém stupni rozkladu, nacházející se na půdě nebo v půdě a s půdou jsou v různém stupni smíšené.

Metody:
Oxidovatelný organicky vázaný uhlík v zemině se oxiduje kyselinou chromovou v prostředí nadbytku kyseliny sírové za definovaných podmínek. Nespotřebovaná kyselina chromová se stanoví titrací roztokem Mohrovy soli (Zbíral a kol., 1997). Obsah organického uhlíku se na humus přepočte vynásobením koeficientem 1,724.
Metodická pomůcka: Hodnocení kvality půdy v ekologicky hospodařícím podniku

Hodnocení obsahu humusu (Kutílek, 1978)

<table>
<thead>
<tr>
<th>Půdy</th>
<th>Obsah humusu v půdách (% hmotnostní)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lehkých</td>
</tr>
<tr>
<td>Bezhumózní</td>
<td>0</td>
</tr>
<tr>
<td>Slabě humózní</td>
<td>pod 1</td>
</tr>
<tr>
<td>Středně humózní</td>
<td>1 – 2</td>
</tr>
<tr>
<td>Silně humózní</td>
<td>nad 2</td>
</tr>
</tbody>
</table>

Kvalita humusu

Kvalita humusu se posuzuje hlavně podle poměru obsahu huminových kyselin k fulvokyselinám (HK:FK). Se vzrůstajícím obsahem huminových kyselin vzrůstá i kvalita humusu. Vysoce kvalitní humus má mít poměr HK:FK vyšší než 1,5:1. Takové půdy jsou odolnější vůči zhutnění i okyslení.

Metody:

Výměnná půdní reakce (pH/KCl) a potřeba vápnění

Hodnocení půd podle výměnné půdní reakce

<table>
<thead>
<tr>
<th>Hodnota pH/KCl</th>
<th>Hodnocení</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 4,5</td>
<td>silně kyselá</td>
</tr>
<tr>
<td>4,6 – 5,5</td>
<td>kyselá</td>
</tr>
<tr>
<td>5,6 – 6,5</td>
<td>slabě kyselá</td>
</tr>
<tr>
<td>6,6 – 7,2</td>
<td>neutrální</td>
</tr>
<tr>
<td>nad 7,2</td>
<td>alkalická</td>
</tr>
</tbody>
</table>

Metody:

Draselné ionty vyluhovacího roztoku vytěsní ze sorpčního komplexu půdy ionty vodíku. Aktivita vodíkových iontů v suspenzi se měří potenciometrickým měřením koncentrace H⁺ v půdním roztoku, půdní pastě nebo vodním extraktu. Tato forma kyselosti se nejvíce vyskytuje v půdách odvápněných, sorpčně nenasytených s vysočím podílem adsorbovaných iontů H⁺ a Al³⁺ (Jandák, Prax, Pokorný, 2001).
Hodnota nám charakterizuje míru zatížení půd solemi, které se vztahují k půdně ekologickým podmínkám stanovišť a ke stupni vyhnojení.

Hranicí hodnoty:
- \(< 30 \mu S.cm^{-1}\) většina zemědělských půd, normální intenzita hnojení, min. zatížení solemi,
- \(30 - 60 \mu S.cm^{-1}\) půdy minerálně bohaté, středně vysoká intenzita hnojení, bez negativních účinků hnojení,
- \(60 - 120 \mu S.cm^{-1}\) půdy s vysokým vyhnojením na minerálně bohatých substrátech, zvýšený obsah solí,
- \(>120 \mu S.cm^{-1}\) vysoké zatížení půd solemi s možnými negativními účinky na růst rostlin.

Metody:

Elektrolyty rozpustné ve vodě jsou extrahovány v poměru půda : voda 1:5 a stanoveny na základě zvýšení specifické elektrické vodivosti extraktu výluhu po filtraci. Výsledky se vyjadřují v \(\mu S.cm^{-1}\), resp. mS.m\(^{-1}\).

Kationtová výměnná kapacita

Půdní sorpční komplex je charakterizován kationtovou výměnnou kapacitou (KVK), tj. množstvím vazebných míst na jednotku půdy v mmol chem. ekv. .kg\(^{-1}\), tj. maximální sorpční kapacita (T).

Metody:

Sorpční komplex půdy se nasytí amonýními ionty perkolací octanem amonným o pH 7,0. V perkolátu se stanoví obsah K, Mg, Ca a případně Na (je možné i stanovení dalších iontů - Fe, Mn, Al). Amonýní ionty vázané na sorpční komplex půdy se vytěsní ionty vápníku a v fluátu se stanoví obsah dusíku destilační metodou. Množství N uvolněného z výměnných míst je úměrné kationtové kapacitě půdy při pH 7 (Zbíral, 1995). KVK se vybírá výluhovým způsobem v jejím tráveném zlaku a vodní líně sorpčního komplexu. Hodnotu zastoupení jednotlivých kationů v sorpčním komplexu (optimum: 65% Ca\(^{2+}\), 15% Mg\(^{2+}\),5 % K\(^{+}\)) vypočítáme jako součet obsahů v jemných frakcích půdy.

Obsah výměnného draslíku

Ionty K\(^{+}\) vázané fyzikálně chemicky sorpční na povrchu půdních koloidů mohou být vytěsněny roztoky neutrálních solí.

Obsah výměnného draslíku je soustředěn přednostně v jemných frakcích půdy a představuje pouze asi 0,8 % (u písečných půd) až 3 % (u humózních – černozemů) z veškerého draslíku v půdě.

Při vysokém obsahu Kn dochází k depresi na Mg\(^{2+}\). Proto v KVK by měl být poměr Mg : K alespoň 3. Výměnný draslík má pro výživu rostlin mimořádný význam, neboť takové vázané K\(^{+}\) jsou z převážné části snadno přijatelné, nepodléhají rychlému vyplavování ani výrazně nemění solijnost v půdním roztoku.

Metody:

Obsah výměnného vápníku a hořčíku

Výměnný vápník je pouťan hlavně fyzikálně chemicky na povrchu půdních koloidů, a to úměrně jejich sorpční kapacitě. Organické koloidy adsorbují relativně více Ca\(^{2+}\) než koloidy minerální. Ionty Ca\(^{2+}\) ve výměnné formě jsou pro rostliny lehce přístupné a zvláště významné pro tvorbu drobtovité struktury. Pro půdní úrodnost je tedy důležité, aby sorpční půdní komplex byl ionty vápníku nasycen z 60 – 70 %.

Metody:

Vzorek půdy se vyluhuje kyselým roztokem podle Melicha II, Melicha III a obsah vápníku a hořčíku stanovíme atomovou absorpci ve spektrofotometrii v plameni acetylen – vzduch (Zbíral, 1995).
Hodnocení kvality půdy v ekologicky hospodařícím podniku

Obhajebný dusíku

Dusík se nachází v půdě ve formě organické (98 – 99 %) a pouze malá část ve formě minerální (1 – 2 %). Organický dusík plní zásobní funkci, rostlinám je přístupný pouze po mineralizaci. Obsah veškerého dusíku se v našich půdách pohybuje od 0,1 – 0,3 %. Obsah celkového dusíku v půdě je hodnotou poměrně stálou, protože je tvořen sloučeninami těžce chemicky i mikrobiologicky rozložitelnými. Dusík je zde vázán na aromatická jádra huminových kyselin, fulvokyselin a huminů (www.ewa.cz).

Metody:

Celkový dusík se stanovuje podle Kjeldahla, kdy se vzorek rozloží varem s kyselinou sírovou a vzniklé NH4+ ionty se po alkalizaci přestěnují ve formě NH3 přestěnují do roztoku H2SO4 nebo H3BO3. Zachycený NH3 se pak stanoví např. titrací (Zbíral a kol., 1997).

Obsah fosforu

Fosfor jako kyselina fosforečná je velmi důležitým prvkom pro výživu rostlin. Do půd se dostává hlavně zvětrávacím apatitou, jako primárního fosforečného nerostu. Dále je obsažen v organických sloučeninách (fosfolipidy, nukleové kyseliny).

Metody:

Vzorek půdy se vyluhuje kyselým roztokem podle Melicha II, Melicha III nebo kyselým roztokem mléčnanu vápenatého a obsah fosforu se stanoví v půdním extraktu spektrofotometricky jako fosfomolybdenová modř (Zbíral, 1995).

6.3 Biologické vlastnosti půdy a metody jejich stanovení

Živé organismy jsou nezastupitelné pro široké spektrum procesů probíhajících v půdě. Ty jsou tvořeny podzemními částmi rostlin a edafonem. Tyto dvě základní složky se podílejí na vzniku a vývoji úrodnosti (kvality) půdy a reprezentují organismy, které svými životními procesy neustále vyvolávají biochemické a biofyzikální procesy v půdě. Proto je třeba půdy posuzovat nejen z hlediska fyziologických a chemických, ale i z hlediska biologických vlastností.

Živé organismy půdy (edafov) pocházejí jak z říše rostlinné (fytoedafon), tak i živočišné (zooedafon). Biomasa edafonu na hektar se může pohybovat kolem 10 i více tun.

Činnost půdních organismů značně ovlivňuje jak fyziologický, tak i chemický, koloidní a biochemické vlastnosti půd. Účastní se uvolňování živin potřebných pro zdárný růst rostlin nebo pouťů živin, které by rostliny jinak nemohly přijmout (vzdusný dusík). V těchto půdních organismech jsou vázány látky (imobilizovány), které by se jinak odplavily z fyziologicky účinného půdního profilu. Využívají látky stimulující růst rostlin, produkují CO2 atd.

Půdní mikroflóra má rozhodující vliv na procesy zvětrávání minerálů, procesy nitrifikace, denitrifikace, fixace molekulárního dusíku a jezírka pak na procesy mineralizace organických látek a humifikace včetně rozkladu reziduí pesticidů.

V orných půdách jsou více rozšířeny aerobní mikroorganismy, které jsou pro tyto půdy nepostradatelné, kdežto anaerobní mikroorganismy jsou více zastoupeny v půdách neprovzdušněných a v podorničních vrstvách. Organismy v půdě jsou ovlivňovány zemědělskými systémy a agrotechnickými zásahy.

Respirometrický test a biologická aktivita půdy

Respirometrický test je založený na měření intenzity tvorby oxidu uhličitého v půdním vzorku a je měřítkem rychlosti rozkladu „dostupných“ organických látek v půdě. V modifikacích testu je stanovována rychlost rozkladu organických látek dusíkatých i bezdusíkatých. Množství vyprodukovaného CO₂ (mg.100g⁻¹ zeminy za hodinu) měříme v inkubovaném vzorku zeminy bez přídavku jakéhokoli substrátu (B – bazální), nebo s přídavkem živin, které mohou mikroorganismy snadno využít (potenciální). Jako zdroj uhlíku a dusíku zároveň slouží kombinace glukózy (G) a siranu amonného (N). Základní respirometrickou analýzou se tak získávají čtyři primární údaje z každého vzorku označované výše uvedenými symboly: B, G, N, NG. Z těchto hodnot vypočítané kvocienty pak slouží ke klasifikaci půdních poměrů (www.agrokom.cz – Využití biologických testů).

Parametry biologických testů

Fyziologická využitelnost půdního dusíku (N/B)

Je dána poměrem (N/B). Čím je vypočtená hodnota vyšší, tím větší je nedostatek fyziologicky využitelného dusíku. Pokud je v půdě dostatek využitelného dusíku, přidaný dusík již respiraci nezvyšuje a hodnota poměru N/B se blíží jedné.

Lehce využitelné organické látky (G/B)

Vyšší hodnoty ukazují na menší množství lehce rozložitelných organických látek.

Vzájemný poměr fyziologicky využitelného uhlíku a dusíku v půdě (G/N)

Při vyrovnáním poměru se tato hodnota rovná přibližně hodnotě 5. Nižší hodnoty znamenají nedostatek dusíku v půdě a nadbytek organických látek, naopak při vyšším poměru je nadbytek dusíku a nedostatek organických látek.

Stabilita organických látek v půdě (NG/B)

Čím je hodnota vyšší, tím větší je stabilita organických látek. Tato hodnota udává, do jaké míry je využívána potenciální schopnost mikroflóry mineralizovat organické látky v porovnání se skutečnou mineralizací.

Faktor komplexního působení f

Faktor f je dán poměrem kvocientů (NG/G) : (N/B). Odchylka od 1 udává do jaké míry ostatní, zejména fyzikální faktory, umožňují plnější využití C a N při komplexním působení než při oddělené aplikaci (www.agrokom.cz – Využití biologických testů).

Biologické půdní testy – amonizace a nitrifikace

Biologická aktivita půdy se stanovuje sérií testů metodou aerobní inkubace homogenizovaných vzorků půd při teplotě +28 °C (Pokorná, Novák, 1981), charakterizujících intenzitu mikrobiologických procesů v půdě. Cílem je popsat jak aktuální, tak potenciální biologické aktivity dané půdy.

Amonizační test

Varianty amonizačního testu umožňují posoudit aktuální obsah amonného dusíku v čerstvém půdním vzorku (Javorský et al., 1987), potenciální množství vyprodukovaného amonného dusíku v inkubovaném půdním vzorku obohaceném vodou a zároveň množství amonného dusíku, jež bylo vázáno v organických sloučeninách.
Nitrifikační test

Intenzita nitrifikace stoupá se zlepšujícími se fyzikálními vlastnostmi půdy, oxidovatelnost dusičkatých látek je stanovena nitrifikačním testem uspořádaným ve třech paralelních stanoveních v jednom vzorku: aktuální obsah dusičnanového dusíku v čerstvém vzorku, obsah dusičnanového dusíku po 7denní inkubaci při 28 °C s přídavkem vody a obsah N.NO₃ – po 7denní inkubaci s přídavkem amonného dusíku formou síranu amonného (Pokorná, Novák, 1981).

Získáváme hodnoty aktuálního obsahu dusičnanového dusíku, hodnoty kvantifikující celkovou tvorbu nitrátů v přirozeném substrátu a potenciální nitrifikaci, tedy maximální schopnost půdy produkovať nitrátový dusík za nadbytku amonného dusíku v substrátu.

Biologické charakteristiky půdy – studium žížal

Významnou skupinou, která se používá pro bioindikaci a monitorování změn v půdě, jsou žížalovití. V rámci této skupiny maloštětinatých červů se rozlišují tři základní ekologické skupiny – žížaly epigeické, které se vyskytují na povrchu půdy v organickém materiálu, žížaly endogeické, které se pohybují ve svrchní vrstvě půdy v horizontálních chodbičkách, a žížaly anektické, které si vytváří rozsáhlé hluboké systémy chodeb.

Vzorkování společenstev žížal většinou spočívá v jejich tzv. individuálním sběru na lokalitě, který postihne prvni dvě zmiňované skupiny. Druhou metodou je odběr půdních vzorků s jejich následným ručním rozborem nebo tepelnou extrakcí pomocí speciálních extraktorů (Tuf, Tvrňák, 2005), touto metodou lze postihnout zástupce druhe a částečně i třetí skupiny. Anektické žížaly se poté vypuzují z půdy například zalitím povrchu půdy slabým roztokem formaldehydu (0,5 %) nebo pomocí elektřiny. K determinaci jednotlivých druhů žížal lze s úspěchem použít například monografii „Žížaly České republiky“ (Pižl, 2002).
7. Citovaná a další použitá literatura

Další odkazy

– www.agroweb.cz
– www.ceu.cz
– www.ceu.cz/puda/
– www.ewizard.cz
– www.zeraagency.eu
Navrhované hodnoty vybraných vlastností A horizontu na ekologicky hospodařících farmách – travní porosty

(Hodnocení vychází z analýz cca 100 vzorků z 4 letého sledování ekologických farm v ČR. Níže uvedené doporučené hodnoty budou upřesňovány v rámci širšího spektra vzorků v následující letech sledování.)

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Velmi nízká</th>
<th>Nízká</th>
<th>Střední</th>
<th>Vysoká</th>
<th>Velmi vysoká</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objemová hmotnost (g.cm(^{-3}))</td>
<td>pod 1</td>
<td>1,01 – 1,1</td>
<td>1,11 – 1,2</td>
<td>1,21 – 1,3</td>
<td>nad 1,3</td>
</tr>
<tr>
<td>Maximální kapilární kapacita (%)</td>
<td>pod 33</td>
<td>33 – 37</td>
<td>37 – 41</td>
<td>41 – 44</td>
<td>nad 44</td>
</tr>
<tr>
<td>Minimální vzdušnost (%)</td>
<td>pod 7</td>
<td>7 – 9</td>
<td>9 – 11</td>
<td>9 – 13</td>
<td>nad 13</td>
</tr>
<tr>
<td>Nasáklivost (%)</td>
<td>pod 40</td>
<td>40 – 45</td>
<td>45 – 50</td>
<td>50 – 55</td>
<td>nad 55</td>
</tr>
<tr>
<td>Pórovitost (%)</td>
<td>pod 40</td>
<td>40 – 45</td>
<td>45 – 50</td>
<td>50 – 55</td>
<td>nad 55</td>
</tr>
<tr>
<td>Obsah humusu (%)</td>
<td>pod 3,5</td>
<td>3,5 – 4,5</td>
<td>4,5 – 5,5</td>
<td>5,5 – 6,5</td>
<td>nad 6,5</td>
</tr>
<tr>
<td>Kvalita humusu (HK/FK)</td>
<td>pod 0,2</td>
<td>0,2 – 0,3</td>
<td>0,3 – 0,4</td>
<td>0,4 – 0,5</td>
<td>nad 0,5</td>
</tr>
<tr>
<td>Výměnná půdní reakce (pH/KCl)</td>
<td>pod 4,8</td>
<td>4,8 – 5,1</td>
<td>5,1 – 5,4</td>
<td>5,4 – 5,7</td>
<td>nad 5,7</td>
</tr>
<tr>
<td>Obsah výměnného draslíku (mg.kg(^{-1}))</td>
<td>pod 100</td>
<td>100 – 160</td>
<td>160 – 210</td>
<td>210 – 270</td>
<td>nad 270</td>
</tr>
<tr>
<td>Obsah výměnného vápníku (mg.kg(^{-1}))</td>
<td>pod 1000</td>
<td>1000 – 1400</td>
<td>1400 – 1800</td>
<td>1800 – 2200</td>
<td>nad 2200</td>
</tr>
<tr>
<td>Obsah výměnného hořčíku (mg.kg(^{-1}))</td>
<td>pod 80</td>
<td>80 – 100</td>
<td>100 – 120</td>
<td>120 – 140</td>
<td>nad 140</td>
</tr>
<tr>
<td>Kationtová výměnná kapacita (mmol.kg(^{-1}))</td>
<td>pod 180</td>
<td>180 – 200</td>
<td>200 – 220</td>
<td>220 – 240</td>
<td>nad 240</td>
</tr>
<tr>
<td>Obsah draslíku podle AZP (mg.kg(^{-1}))</td>
<td>pod 90</td>
<td>90 – 130</td>
<td>130 – 160</td>
<td>160 – 190</td>
<td>nad 190</td>
</tr>
<tr>
<td>Obsah fosforu podle AZP (mg.kg(^{-1}))</td>
<td>pod 20</td>
<td>20 – 40</td>
<td>40 – 60</td>
<td>60 – 80</td>
<td>nad 80</td>
</tr>
<tr>
<td>Obsah hořčíku podle AZP (mg.kg(^{-1}))</td>
<td>pod 50</td>
<td>50 – 65</td>
<td>65 – 80</td>
<td>80 – 95</td>
<td>nad 95</td>
</tr>
</tbody>
</table>
Srovnání doposud zjištěných výsledků s limity pro konvenční zemědělství ukazuje, že fyzikální vlastnosti vykazují v ekologickém zemědělství podstatně lepší hodnoty. V konvenčním zemědělství je limitní hodnota objemové hmotnosti 1,45 g.cm⁻³ a v našem hodnocení je za vysokou považována již objemová hmotnost 1,3 g.cm⁻³. Podobně u půrovitosti je v konvenčním zemědělství kritická hodnota 40 % a málo A horizontů má půrovitost nad 45 %. Z výsledků získaných na ekologických farmách vyplývá, že střední rozmezí je mezi 45 – 50 %. Obsahy fosforu jsou na ekologických farmách pod travními porosty (střední hodnoty 40 – 60 mg.kg⁻¹) ve srovnání s konvenčními (střední hodnoty 51 – 90 mg.kg⁻¹) snížené. Podobně je tomu u draslíku, kde na ekologických farmách je střední hodnota obsahu 130 – 160 mg.kg⁻¹ a na konvenčních 161 – 250 mg.kg⁻¹ a u hořčíku jsou hodnoty pro ekologické farmy v intervalu 65 – 80 mg.kg⁻¹ a pro konvenční 131 – 170 mg.kg⁻¹. Ve srovnání s konvenčním způsobem hospodaření je ekologické zemědělství daleko lépe vyrovnáno se zasoleností půd měřenou elektrickou vodivostí vodního výluhu, kdy v ekologickém zemědělství není dosahováno hranice 120 uS.cm⁻¹.

Za závažné lze považovat nízké hodnoty půdní reakce v ekologickém zemědělství, zde bude potřeba věnovat vážnější pozornost než doposud. Biologickou aktivitu hodnotit nelze neboť nemáme srovnávací hodnoty z konvenčního zemědělství.

Výše uvedené porovnání má pouze orientační charakter, neboť výsledků komplexního sledování ekofarů je velmi málo, srovnání je velmi obtížné a mohou být neviděny, kde leží optimum. Veškeré kategorizace zásobnosti živinami jsou v konvenčním zemědělství vztahovány k dosaženému výnosu, v ekologickém zemědělství je nutné si s větším útulem klást i otázky typu: jak na to reaguje půda? Pokud se podíváme na biologickou aktivitu půdy, pak v konvenčním zemědělství není standardné testováno a i proto je cesta srovnávání hodnot konvenčního zemědělství vs. ekologické zemědělství v řadě parametrů nevhodná. Důležitější je sledovat změny uvnitř agroekosystému ekologického zemědělství a půdní vlastnosti dávat do vztahu k dalším charakteristikám systému.

Výsledky jsou výstupem výzkumného úkolu QD 1236 Technologie nestájového chovu ovcí pro marginální oblasti a podniky ekologického zemědělství v letech 2001–2004 (Závěrečná zpráva projektu QD 1236 Mze NAZV). Zpracování metodické pomůcky bylo možné i díky grantu MŠMT – Národní program výzkumu II č. 2806101 (Optimalizace zemědělské a říční krajiny v ČR s důrazem na rozvoj biodiverzity).
Metodická pomůcka byla vytvořena v podpůrném programu 9.F.g
Metodická činnost k podpoře zemědělského poradenského systému
Ministerstva zemědělství ČR

<table>
<thead>
<tr>
<th>Název</th>
<th>Metodická pomůcka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodnocení kvality půdy v ekologicky hospodařícím podniku</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recenzent</th>
<th>RNDr. Pospíšilová Ľubica, CSc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příručka prošla jazykovou korekturou</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vydavá</th>
<th>ZERA – Zemědělská a ekologická regionální agentura, o.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Místo a rok vydání</td>
<td>Náměšť nad Oslavou, 2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vydání</th>
<th>první</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Náklad</th>
<th>300 ks</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Distribuce a příjem objednávek</th>
<th>ZERA – Zemědělská a ekologická regionální agentura, o.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Místo a adresa</td>
<td>V. Nezvala 977, 675 71 Náměšť nad Oslavou, Tel.: 568 620 070, e-mail: info@zeraagency.eu, www.zeraagency.eu</td>
</tr>
</tbody>
</table>

|----------|---------------------|