

Soil monitoring in Poland – long term and new approaches

Grzegorz Siebielec, Radoslaw Kaczynski, Artur Łopatka, Bożena Smreczak

Brno 2017

Institute of Soil Science and Plant Cultivation (IUNG) State Research Institute

- Agro-microbiology
- Herbology and Soil Tillage
- Agrometeorology and Informatic Systems
- Cereal Production
- Forage Crop Production
- Plant Breeding and Biotechnology
- Plant Nutrition and Fertilization
- Systems and Economics of Production
- Biochemistry and Plant Quality
- Soil Science and Land Protection

SOIL DATABASES IN POLAND

Digital soil map 1:25000

1037,654

618,693 2

672,826 2

764,37

1020,298

OB/d

Rb ic/=

Δ li.

А

R C-

ici-

gs

:w/

W:

Database of 60000 soil profiles

Reder: 1 1 Name Warrent Wyterent Beschrift Opch Opch <th></th> <th>1425.292 2</th> <th>Rb</th> <th>/s/=</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>×</th> <th></th> <th></th> <th></th> <th>1</th> <th>3 . 9. 2</th> <th>10000</th> <th>and while</th> <th>MARSH 20</th> <th>- And A</th> <th>hi i i</th> <th>C.M. C. H. C.</th> <th>all makers</th> <th></th> <th>Borch</th> <th>OW</th> <th>1.1</th> <th>-</th>		1425.292 2	Rb	/s/=								×				1	3 . 9. 2	10000	and while	MARSH 20	- And A	hi i i	C.M. C. H. C.	all makers		Borch	OW	1.1	-
Date: Open Binding Revolution (Revolution Revolution Revolutin Revolutin Revolution Revolutin Revolution Revolution Revolutio			_				. 1	2					- L - J	_			-			Inter			Obiekt			Lubac	sów		
Total a log 1 or s Object 1 to 1 or s Object 1 or s		Rekord: II I I Pokaž: Wszystkie Wybrane								nej Rekordy (0 wybrany(e)(ych) z 8995 Op Ch do mapy glebowo - rolniczej Powiat										and le									
New type is a left of l		(piezatis Stacji Chemizne-Reinicze) w skeli 1:5000 Probobiorca																											
Normal with the barries with the b		Określenia jelowe Określenia la boratory jne Prozednik wybie w tokad w											1																
Image uppe	Nr od+	Užutek, kompleks, klasa,	Glebo-	ebo-	Skind mecha- niczny	Nr Inborato-		1				disc)r inc.		a sreanye		1000		1	Próchnica	cal CaCO.			Kuas	owość +		w/g I	fguera	Me	Mn ppm
1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 10	kryw- ki	typ, položenie odkrywk	pobrana w cm	gleb		ryjny prúb	1.0 1.0 0.5 0.5 0.25	0.25 0.10	0.10 0.05	0.05	2 0.02	0.006	0.002	1.0 0.1	0.1	0.02	3	ž	H ₂ O	FC1	bydr.	wµm.	wym.	P ₂ O ₅	K2O	buzh we	przy sw.		
2 B=4x=-plaski 20 4y plas 1366 0.9 0.2 1.5 1.6 1.6 9 7 13.566.5 0 1.61 - 9.7 4.2 2.07 0.25 0.277.2.2 4.0 9 36 2 * 40 43 plas 1366 0.0 0.2 1.2 13.5 6.9 46 19 5 6 17.122.9 30 - 6.1 4.6 0.6 1.0 7 2 * 70 0 21 1366 0.0 0.5 12.1 12.4 35 19 4 17 12.4674.4 - 6.2 4.6 0.6 0.6 1.0 7 3 * 170 92 - 6.3 7.2 0.6 0.5 2.6 0.6 3.2 17.190.9 2.2 - 6.3 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1	2	3	4	. 5	6	7	6	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
2 * 40 43 p2t 1360 0.0 1.2 15.9 6.9 46 19 5 6 17.132.9 90 6.1 4.6 0.68 1.0 7 2 * 76 B1 921 1362 0.0 0.0 12.1 12.4 35 19 4 17 12.647.4 40 - 6.2 4.6 0.64 6.5 26 3 * 76 982 911 1366 0.4 0.2 0.7 16.2 12.6 38 15 3 13 17.150.9 932 - 6.3 4.2 9.0 9.8 4 36 9 Refix=p2centit 95 A1 p2x 136 0.6 3 13 3 6 28.049.42 22 1.5 - 6.3 4.2 9.0 9.8 4 36 9 *** 92 135 0.4 0.5 2.9 2.0 1.0 1.0 7 1.0 1.0 1.0 1.0	2	R-ax-plaski	20	Ap	p2s	1566	0.0	0.2	1.5	11.8	16.9	40	18	5	7	13.	596.	5 3	0 1.61	-	5.7	4.2	3.07	0.29	0.1	7 2.3	4.0	5	36
2 * * * * * 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 15 10 <td>2</td> <td>•</td> <td>40</td> <td>43</td> <td>pzs</td> <td>1560</td> <td>0.0</td> <td>0.0</td> <td>1.2</td> <td>15.9</td> <td>6.9</td> <td>46</td> <td>19</td> <td>3</td> <td>6</td> <td>17.</td> <td>152.</td> <td>9 3</td> <td>þ</td> <td>-</td> <td>6.1</td> <td>4.6</td> <td></td> <td></td> <td></td> <td>0.8</td> <td>1.0</td> <td>7</td> <td></td>	2	•	40	43	pzs	1560	0.0	0.0	1.2	15.9	6.9	46	19	3	6	17.	152.	9 3	þ	-	6.1	4.6				0.8	1.0	7	
a $\frac{150}{100}$ $\frac{923}{923}$ $\frac{921}{100}$ $\frac{160}{100}$ $\frac{920}{100}$ $\frac{921}{100}$ $\frac{160}{100}$ $\frac{920}{100}$	2		70	Bl	p21	1562	0.0	0.0	0.5	12.1	12.4	35	19	4	17	12.	647.	4 4	þ	-	6.2	4.8				0.4	6.9	26	
9 R=Ax=p2aski 20 Ay 928 1961 0.0 1.2 4.4 23.2 21.2 28 13 3 6 28.0494222 1.55 - 6.3 4.4 3.15 0.63 0.43 9.3 0.4 9.8 4 36 9 8 55 43 92x 1553 0.0 0.9 2.9 23.6 18.0 35 13 3 4 27.053.0 20 - 6.8 4.45 0.4 1.45 8 5 8 192x 1553 0.0 0.9 2.9 23.6 18.0 37 3 4 27.053.0 20 - 6.8 4.45 0.4 1.45 8 5 8 192x 1550 0.0 0.9 5.2 18.0 18.0 19.0 7 19.0 7 8 15.053.7 2.5 2.5 2.50 2.00 4.40 12 8 8 9 92x 15.0 0.0 0.0 1.7 13.1 17.7 36 </td <td>3</td> <td></td> <td>150</td> <td>pri</td> <td>p21</td> <td>1564</td> <td>0.0</td> <td>0.2</td> <td>0.7</td> <td>16.2</td> <td>12.9</td> <td>38</td> <td>16</td> <td>3</td> <td>13</td> <td>17.</td> <td>150.</td> <td>9 3</td> <td>2</td> <td>-</td> <td>6.3</td> <td>5.1</td> <td></td> <td></td> <td></td> <td>1.0</td> <td>5.0</td> <td>21</td> <td></td>	3		150	pri	p21	1564	0.0	0.2	0.7	16.2	12.9	38	16	3	13	17.	150.	9 3	2	-	6.3	5.1				1.0	5.0	21	
3 3 4 27.053.020 - 6.4 4.5 0.4 1.5 8 5 1 35 B1 p2s 1530 0.0 0.5 5.2 18.6 19.7 30 7 4 15 24.349.7 25 - 5.4 3.5 2.60 2.48 1.3 7.8 16 5 11 11 24.349.7 25 - 5.4 3.5 2.60 2.48 1.3 7.8 16 5 11 25 C 1156 0.0 2.9 4.7 15.6 16.6 32 11 4 11 22.450.6 2.5 - 5.2 3.5 2.95 2.9	5	R-Az-pleski	25	Ap	pls	1561	0.0	1.2	4.4	23.2	21.2	28	13	3	6	28.	849.	2 2	2 1.55	-	6.3	400	3.15	0.62	0.5	3 0.4	9.8	4	36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	-	55	* 3	pls	1563	0.0	0.5	2.9	23.6	18.0	35	13	3	4	27.	053.	0 2	þ	-	6.4	4.9				0.4	1.5	8	
5 " 156 C 1556 0.0 2.9 4.7 15.8 18.6 32 11 4 11 23.450.6 2.52 3.55 2.52 2.50 2.0 4.0 12 6 R-Ax-p208k1 20 Ap p2x 1559 0.0 0.9 1.7 13.1 17.7 36 15 7 8 15.357.7 31.95 - 5.6 4.3 4.35 0.54 0.43 4.35 0.54 0.43 4.35 0.54 0.56 15 0.56 15 0.56 15 0.56 15 0.56 15.9 4 15 12.652.4 5.6 2.57 2.56 0.54 3.5 2.57 2.56 15.0 0.57 2.57 2.56 2.57 2.57 2.5	5		55	B1	pžs	1550	0.0	0.5	5.2	18.6	19.7	30	7	4	15	24.	349.	7 2	5	-	5.4	3.9		2.60	2.4	8 1.3	7.8	16	
8 R-&x-p2*8ix1 20 Ap p2x 1559 0.0 0.0 1.7 13.1 17.7 36 16 7 8 15.35.7 31.93 - 5.6 4.33 0.54 0.52 0.52 12.0 6 92 8 " 30 " 31 17.7 36 16 7 8 15.35.7 31.93 - 5.6 4.3 4.35 0.54 0.52 0.54 2.5 17.0 6 92 8 " 70 B1 p21 1569 0.0 0.2 12.4 16.4 37 15 4 15 12.657.4 - 5.4 3.8 2.37 2.21 3.0 7.2 3.4 8 70 B1 p21 1569 0.0 0.0 0.7 10.1 13.5 39 15 15 12.657.4 - 5.4 3.8 2.37 2.21 3.0 7.2 3.4 8 1390 0 0 0 0 0 0 0 <t< td=""><td>5</td><td></td><td>150</td><td>C</td><td></td><td>1556</td><td>0.0</td><td>2.9</td><td>4.7</td><td>15.8</td><td>18.6</td><td>32</td><td>11</td><td>4</td><td>11</td><td>23.</td><td>450.</td><td>6 2</td><td>5</td><td>-</td><td>5.2</td><td>3.9</td><td></td><td>2.99</td><td>2.3</td><td>0 2.0</td><td>4.0</td><td>12</td><td></td></t<>	5		150	C		1556	0.0	2.9	4.7	15.8	18.6	32	11	4	11	23.	450.	6 2	5	-	5.2	3.9		2.99	2.3	0 2.0	4.0	12	
e ** 50 *3 pix 1563 0.0 0.0 0.2 14.2 20.6 36 19 4 6 14.4956.6 29 - 5.9 4.4 0.52 0.47 3.7 2.2 3 8 70 B1 pix 1566 0.0 0.0 0.2 12.4 16.4 37 15 4 15 12.652.4 3.8 2.37 2.21 3.0 7.2 3.4 8 70 B1 pix 1566 0.0 0.0 0.2 12.4 16.4 37 15 4 15 12.652.4 3.8 2.37 2.21 3.0 7.2 3.4 8 1350 0 pix 15.5 39 15 5 15 10.854.2 - 5.5 3.6 1.64 1.50 4.7 9.8 24 9 15 9 15 5 15 5 15 10.854.2 - 5.5 2.6 1.64 1.50 4.7 9.8 24	8	R-åx-pleski	20	ap	plu	1559	0.0	0.5	1.7	13.1	17.7	36	16	7	8	15.	353.	7 3	1 1.93	-	5.0	4.3	4.35	0.94	0.4	3 2.9	13.0	6	92
8 70 B1 P21 1360 0.0 0.2 12.4 16.4 37 15 4 15 12.652.4 - 5.4 3.6 2.37 2.21 5.0 7.2 14 8 * 130 C P21 1567 0.0 0.7 10.1 15.5 39 15 5 15 10.854.2 - 5.5 3.6 2.37 2.21 5.0 7.2 14 8 * 130 C P21 1567 0.0 0.7 10.1 15.5 39 15 5 15 10.854.2 - 5.5 3.6 2.37 2.21 5.0 7.2 14	8		50	43	płs	1565	0.0	0.0	0.2	14.2	20.6	36	19	4	6	14.	496.	6 2	9	-	5.9	4.4		0.52	0.4	7 3.7	2.2	3	
8 * 150 C p21 1967 0.0 0.0 0.7 10.1 13.5 39 13 5 13 10.854.2 35 - 5.5 3.6 1.64 1.50 4.7 9.8 14	8	*	70	Bl	pZi.	1563	0.0	0.0	0.2	12.4	26.4	37	15	4	15	12.	653.	4 3		-	5.4	3.8		2.37	2.2	1 3.0	.7.2	14	
	8		150	C	p 21	1967	0.0	0.0	0.7	10.1	15.5	39	15	5	15	10.	854 .	2 3	5	-	5.5	3.8		1.64	1.9	0 4.7	9.8	24	
							-						1		1														
							-								-												-		
																		_				1							

LARGE PROGRAMME FOR SOIL ASSESSMENT AT NATIONAL SCALE

1 average soil sample per 400 ha

Parameters: soil texture, pH, SOC, Cd, Pb, Zn, Cu, Ni, S; plant composition

PERMANENT NATIONAL MONITORING 1995-2015; 216 LOCATIONS

PERMANENT MONITORING OF SOIL QUALITY

"Soil Monitoring, is an element of the State Monitoring of the Environment

Aim: to observe changes in soil quality under agricultural and nonagricultural anthropogenic pressure

Obligation of monitoring, observation of changes and soil quality written in the Environmental Protection Law

Criteria for TE content in the Regulation of Min of Environment (2002) soil quality standards. New regulation in 2016.

Editions: 1995, 2000, 2005, 2010, 2015

Performed by IUNG

Financed by State Fund for Env. Prot. and Water Management.

Granted by Chief Inspectorate of Environmental Protection

Monitoring data – available for public

🥖 Monitoring Chemizmu (Gleb - Windows Interr	net Explorer										
💽 🗢 🧟 http://geo	.iung.pulawy.pl/chemizm	/index.html?mod=pomiary	/&p=277	P 🛛 😽 🗙	Annitoring Chemizmu G	ieb x	1					🟦 🛣 🛱
	0 monitoringu	Metodyka badań	Podsumowanie	Wyniki szczegółowe	Objaśnienia			a di Sanna				<u></u>
	Dual (* 277	I		1	I I							
	Punkt: 277											_
	Miejscowość: sko Gmina: Końskowo Wojewódzwto: lu	wieszyn ola (0614052) Ibelskie; Powiat: puła	awski									
	Kompleks: 8 (zbo	żowo-pastewny moci	ny); Typ: Dz (czarr	ne ziemie zdegradowane)	; Klasa bonitacyjna: IIII	Ь						
	Gatunek gleby wy BN-78/9180-11: p PTG 2008: pyg (p USDA: SiL (silt lo	g: płg (pył gliniasty) ył gliniasty) am)										
			11-111-		la de catlus		Ro	ok				
			Uziarnienie		Jednostka	1995	2000	2005	2010			
	1,0-0) ,1 mm			udział w %	6	8	9	8			
	0,1-0),02 mm			udział w %	70	66	65	67			
	< 0.0)2 mm			udział w %	24	26	26	25			
	2,0-0),05 mm			udział w %	n.o.	n.o.	n.o.	20			
	0,05	-0,002 mm			udział w %	n.o.	n.o.	n.o.	77			
	< 0.0)02 mm			udział w %	6	4	4	3			
							Ro	ok				
			Odczyn i węglany		Jednostka	1995	2000	2005	2010			
	Odcz	yn "pH " w zawiesin	ie H2O		jednostka pH	7.1	7.5	7.0	8.3			
	Odcz	yn "pH " w zawiesin	ie KCI		jednostka pH	6.5	6.8	6.4	7.9			
	Węgl	any (CaCO3)			%	n.o.	1.46	2.31	2.24			
	_						Do	k				
		Subst	ancja organiczna	gleby	Jednostka	1995	2000	2005	2010			
	Próc	hnica			%	2,10	1.90	1.97	1.90			
	Wegi	el organiczny			%	1,22	1.14	1.14	1.10			
	Azot	ogólny			%	0.150	0.138	0.136	0.143			
	.	- Cont	1			<u> </u>						▼ ■
💦 Start 🚺 🥭 💿	💕 odbior	🛀 III etap m	onitoring	Microsoft Word	🛛 🨂 Monitoring Chemiz	mu				PL 📾 «	< 💙 📢 📕	70 🔁 🜘 00:53

www.gios.gov.pl/chemizm_gleb/

From analogue to digital information

Paper information \longrightarrow Spatial digital data (soil maps, land use maps, road network, aerial images) \longrightarrow verified georeferences \longrightarrow field verification \longrightarrow final update of locations

Shifts of sampling locations

Monitoring parameters

- Texture
- SOC
- Carbonates –Scheiblera meth.
- pH in 1MKCI and water
- Hydrolytic and exchange acidity
- Exch. Al
- Available P, K, Mg
- Soluble S
- Total C
- Radioactivity
- Salinity
- Exchange cations
- Base cations
- CEC
- CEC saturation with base cations
- Total S
- Total P, Na, Mg, Ca, Fe, Mn, Al, Cu, Ni, Cr, Zn, V, Cd, Co, Pb, Ba, Be, Li, La
- PAH

Since 2015:

- Hg
- N min
- Pesticides carbaryl, carbofuran, maneb, atrazine
- Chloroorganic pesticides DDT/DDE/DDD, aldrine, dieldrine, α -HCH, β -HCH, g-HCH

Monitoring - Analysis of trends

Share of pH classes (from bottom: very acidic, acidic, slightly acidic, neutral, akaline)

Mineral and Ca-fertilizers utilized in Poland

Share of SOM content classes (blue <1%, red 1-2%, green (2-3.5%), purple (>3.5%)

TE exceeding Standard criteria

TE content levels – IUNG guidelines

REGIONAL ASSESSMENTS FOR SOC CHANGES – HISTORICAL PROFILES

10 000 georeferenced samples

Fig. 6. Relationship between initial SOC content and SOC change in soil proi 1960–2010 period.

Fig. 9. Comparison of SOC stock trends for scenarios S-1 (as was) and S-2 (MFS). Bars mean average manure and plant inputs of C in years of national agricultural census for the considered scenarios.

Modelling soil carbon trends for agriculture development scenarios at regional level

Work under 7FP Cantogether project

Radoslaw Kaczynski ^{a,*}, Grzegorz Siebielec ^a, Marjoleine C. Hanegraaf ^b, Hein Korevaar ^c

^a Institute of Soil Science and Plant Cultivation-State Research Institute, Pulawy, Poland

^b Nutrient Management Institute, Wageningen, The Netherlands

^c Wageningen University & Research, Agrosystems Research, Wageningen, The Netherlands

MONITORING OF PEAT SOILS – SINCE 2016 Peat soils – what are the trends?

Map of organic soils

Eastern Poland – current C contents in former peat soils

Case studies

Country monitoring of peat soils

Case studies

Land use change analysis

Field assessments and sampling

SOIL MONITORING FOR CAP EVALUATION AND IMPLEMENTATION

Soil parameters	Year – number of sampling locations									
	2014-2015	2016	2017							
pH-H ₂ O and pH-KCl	160 228	-	3 200							
Corg	-	30 000	14 200							
exchangeable P, K, Mg	-	30 000	14 200							
CEC	-	-	44 200							

Since 2017:

- 600 farms across Poland representing various CAP instruments
- range of chemical and biodiversity parameters
- questionnaires on agricultural data

Collaboration with state Agro-chemical Stations

MONITORING LAND TAKE, URBAN SPRAWL, ARTIFICIAL SURFACES, SEALING

Land take vs soil classes (based on GUS data)

Demographic data - migration

URBAN-SMS

Urban Soil Management Strategy

2007 - 2013

Priority 3 Environment

Area of Intervention 3.1

Developing a High Quality

Environment by Managing and

Protecting Natural Resources and

Heritage

www.urban-sms.eu

URBAN-SMS project partners:

City of Stuttgart (Lead Partner)

City of Vienna

Federal Environment Agency, Austria

City of Milan

University of Torino

City of Celje

Agricultural Institute of Slovenia

Institute of Soil Science and Plant Cultivation, Pulawy

Czech University of Life Sciences Prague

Soil Science and Conservation Research Institute, Bratislava

District Authority Stuttgart

NATIONAL MONITORING OF LAND TAKE – COUNTRY LEVEL

Transition indexes for best soils 2006-2012

Thank you for the attention

